Posidonia oceanica

Posidonia oceanica (L.) Delile

Languages: English

Overview

Brief Summary

Posidonia oceanica, commonly known as Neptune Grass or Mediterranean tapeweed, is a marine flowering plant endemic to the Mediterranean Sea. Like other seagrasses, it forms large underwater meadows in the submerged photic zone of sheltered coastal waters (Pirog 2011).  Due to its high rate of primary production and its ability to structure and stabilize the seabed, Neptune grass creates habitat for many other marine organisms and thus plays a significant role in littoral Mediterranean ecosystems (Gobert et al. 2006, Kendrick et al. 2005, Pergent et al. 1994). 

Posidonia oceanica is one of the largest, slowest growing, and longest-lived plants.  In a recent genetic study of 40 P. oceanica populations across the Mediterranean, Arnaud-Haond et al. (2012) found individual clones spanning up to 15 km (9.3 miles).  Based on the plant's known growth rate, such individuals are likely to be thousands, possibly tens of thousands of years old (Arnaud-Haond et al. 2012) .  

With their origin possibly dating back to the Pleistocene, some P. oceanica meadows have shown great resilience, persisting through great environmental changes over millennia.  Yet, today P. oceanica populations are declining rapidly due to human-induced disturbances (Ardizzone et al. 2006, Duarte 2002, Marbà et al. 1996, 2005, Montefalcone et al. 2007, Waycott et al. 2009).  Major threats include coastal construction (Badalamenti et al. 2006, Ruiz & Romero 2003), trawling (Gonzalez-Correa et al. 2005),  fish farming (Díaz-Almela et al. 2008, Pergent-Martini 2006), and climate change (Marbà & Duarte 1997, 2009). Arnaud-Haond et al. (2012) warn that "the ancient meadows of P. oceanica are declining at a rate several hundred-fold faster (about 5%.yr−1, Marbà et al 2005, Waycott et al. 2009) than the rate over which they spread when forming (Doyle & Doyle 1987, Sintes 2006), a situation that this slow growing, long-lived species is poorly capable of recovering from."

Author(s): Schulz, Katja
Rights holder(s): Schulz, Katja

Taxonomy

  • Aegle fragilis Dulac (synonym)
  • Alga oceanica (L.) Kuntze (synonym)
  • Caulinia oceanica (L.) DC. (synonym)
  • Kernera oceanica (L.) Willd. (synonym)
  • Posidonia caulini K.D.Koenig (synonym)
  • Taenidium acuminatum Targ.Tozz. (synonym)
  • Taenidium oceanicum (L.) Targ.Tozz. (synonym)
  • Zostera oceanica L. (synonym)

References

Ardizzone, G., Belluscio A., & Maiorano L. (2006).  Long-term change in the structure of a Posidonia oceanica landscape and its reference for a monitoring plan. Marine Ecology. 27(4), 299 - 309.
Arnaud-Haond, S., DUARTE CARLOS. M., Diaz-Almela E., Marbà N., Sintes T., & Serrão E. A. (2012).  Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PLoS ONE. 7(2), e30454.
Badalamenti, F., Carlo G D., D’Anna G., Gristina M., & Toccaceli M. (2006).  Effects of Dredging Activities on Population Dynamics of Posidonia oceanica (L.) Delile in the Mediterranean Sea: The Case Study of Capo Feto (SW Sicily, Italy). Hydrobiologia. 555(1), 253 - 261.
Ceccherelli, G., & Cinelli F. (1999).  Effects of Posidonia oceanica canopy on Caulerpa taxifolia size in a north-western Mediterranean bay. Journal of Experimental Marine Biology and Ecology. 240(1), 19 - 36. Abstract
Doyle, J. J., & Doyle JL. (1987).  A rapid DNA isolation procedure for small quantities of fresh leaf tissue. . Phytochemical Bulletin. 19, 11-15.
DUARTE, CARLOS. M. (2002).  The future of seagrass meadows. Environmental Conservation. 29(02), 
Díaz-Almela, E., Marbà N., Álvarez E., Santiago R., Holmer M., Grau A., et al. (2008).  Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin. 56(7), 1332 - 1342.
Gobert, S., Cambridge ML., Velimirov B., Pergent G., Lepoint G., Bouquegneau J. - M., et al. (2006).  Biology of Posidonia. (Larkum A., RJ O., CM D., Ed.).Seagrasses: Biology, Ecology, and Conservation. 387-408.
González-Correa, J. M., Bayle J. T., Sánchez-Lizaso J. L., Valle C., Sánchez-Jerez P., & Ruiz J. M. (2005).  Recovery of deep Posidonia oceanica meadows degraded by trawling. Journal of Experimental Marine Biology and Ecology. 320(1), 65 - 76.
Guidetti, P. (2001).  Detecting environmental impacts on the Mediterranean seagrass Posidonia oceanica (L.) Delile: the use of reconstructive methods in combination with ‘beyond BACI’ designs. Journal of Experimental Marine Biology and Ecology. 260(1), 27 - 39.
Kendrick, G. A., Marbà N., & DUARTE CARLOS. M. (2005).  Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine, Coastal and Shelf Science. 65(4), 717 - 725.
Larkum, A. W. D., Orth R. J., & Duarte C. M. (2006).  Seagrasses: Biology, Ecology, and Conservation.
Marbà, N., & Duarte C. M. (1997).  Interannual changes in seagrass (Posidonia oceanica) growth and environmental change in the Spanish Mediterranean littoral zone. LIMNOLOGY AND OCEANOGRAPHY. 42, 800-810.
Marbà, N., & DUARTE CARLOS. M. (2009).  Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology. 16(8), 2366 - 2375.
Marbà, N., Duarte C. M., Cebrián J., Gallegos ME., Olesen B., & Sand-Jensen K. (1996).  Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline.. Marine Ecology Progress Series. 137, 203-213.
Marbà, N., DUARTE CARLOS. M., Díaz-Almela E., Terrados J., Álvarez E., Martínez R., et al. (2005).  Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries. 28(1), 53 - 62.
Mateo, M. A., Romero J., Pérez M., Littler M. M., & Littler D. S. (1997).  Dynamics of Millenary Organic Deposits Resulting from the Growth of the Mediterranean SeagrassPosidonia oceanica. Estuarine, Coastal and Shelf Science. 44(1), 103 - 110.
Montefalcone, M. (2009).  Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: A review. Ecological Indicators. 9, 595-604.
Montefalcone, M., Albertelli G., Morri C., Parravicini V., & Bianchi C N. (2009).  Legal protection is not enough: Posidonia oceanica meadows in marine protected areas are not healthier than those in unprotected areas of the northwest Mediterranean Sea. Marine Pollution Bulletin. 58(4), 515 - 519.
Montefalcone, M., Morri C., Peirano A., Albertelli G., & Bianchi C. N. (2007).  Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. Estuarine, Coastal and Shelf Science. 75(1-2), 63 - 71.
Pergent, G., Romero J., Pergent-Martini J., Mateo M. - A., & B o u d o u r e s q ue C. - F. (1994).  Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. MARINE ECOLOGY PROGRESS SERIES. 106, 139-146.
Pergent-Martini, C., Boudouresque C-F., Pasqualini V., & Pergent G. (2006).  Impact of fish farming facilities on Posidonia oceanica meadows: a review. Marine Ecology. 27(4), 310 - 319.
Pirog, R. S. (2011).  Seagrass: Ecology, Uses, and Threats.
Ruiz, J. M., & Romero J. (2003).  Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Marine Pollution Bulletin. 46(12), 1523 - 1533.
Sintes, T., Marbà N., & CM D. (2006).  Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora.. Estuaries and Coasts. 29, 72-80.
Waycott, M., Duarte C. M., Carruthers T. J. B., Orth R. J., Dennison W. C., Olyarnik S., et al. (2009).  Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences. 106(30), 12377 - 12381.