Languages: English



Cell wall: generally contains cellulose (1-10% of thallus dry-weight), alginic acid, and sulfated polysaccharides

Plastids: varies among genera – may be from one to many per cell; typically have a girdle lamella; have a periplastidal endoplasmic reticulum, which is continuous with the nuclear envelope

Pigments: fucoxanthin, which gives the algae their characteristic greenish-brown color; chlorophyll a; chlorophylls c1 and c2; beta-carotene; and violaxanthin

Photosynthetic reserve product: laminarian

(Lee, 1999; Graham & Wilcox, 2000)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Life Cycle

There are three general types of life history among the Phaeophyaceae: isomorphic alternation of generations, heteromorphic alternation of generations, and diplontic (see diagrams among images). (Graham & Wilcox, 2000)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


“There are no unicellular or colonial organisms in the order, and the algae are basically filamentous, pseudoparenchymatous, or parenchymatous.” (Lee, 1999)

See also: Phaeophyceae

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Visible thalli range from a few centimeters to over 45 m (150 ft), depending on species and environmental conditions. The gametophytes of species with heteromorphic alternation of generations are microscopic. (Connor & Baxter, 1989).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine



Phaeophyceae are nearly all marine and most occur on rocky substrates in the upper littoral zone and the low to mid intertidal.  There are only four genera with freshwater species, however, several marine taxa can also occur in the brackish water of saltmarshes. (Lee, 1999)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Phaeophyceae can dominate the rocky subtidal and intertidal of temperate regions, where, though the species diversity is lower than that of the red algae, their numbers are much higher.  The “Sargasso Sea” is the only area in warm waters where Phaeophyceae is abundant – as large “rafts” of floating Sargassum. (Lee, 1999).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Sexual and vegetative, with three general life history classes: isomorphic alteration of generations, heteromorphic alternation of generations, and diplontic. Populations occurring in brackish waters have almost totally lost their ability for sexual reproduction. Their primary method of propagation is vegetative.

(Lee, 1999; Graham & Wilcox, 2000).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Evolution and Systematics

Systematics and Taxonomy

This is still debated.  Some classify Phaeophyceae as a phylum (aka “division”) within the kingdom Plantae, whereas others place it in the taxonomically narrower kingdom “Chromista.”  Some algal biologists use the term “Phaeophycean” and place that in the higher taxon “Ochrophytes.” Others classify Phaeophyceae within the “Heterokontophyta.” 

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Abbott, I. A., & Hollenberg G. J. (1976).  Marine Algae of California. 827 pages. Stanford, CA: Stanford University Press.
Andersen, R. A. (2004).  Biology and systematics of heterokont and haptophyte algae. American Journal of Botany. 91, 1508-1522. Abstract
Butler, A. J., Rees T., Beesley P., & Bax N. J. (2010).  Marine Biodiversity in the Australian Region. PLoS ONE. 5(8), e11831.
Coll, M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., et al. (2010).  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE. 5(8), e11842.
Connor, J., & Baxter C. (1989).  Kelp Forests.
Costello, M J., Coll M., Danovaro R., Halpin P., Ojaveer H., & Miloslavich P. (2010).  A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE. 5(8), e12110.
Danovaro, R., Company J B., Corinaldesi C., D'Onghia G., Galil B., Gambi C., et al. (2010).  Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE. 5(8), e11832.
Fautin, D., Dalton P., Incze L. S., Leong J-A. C., Pautzke C., Rosenberg A., et al. (2010).  An Overview of Marine Biodiversity in United States Waters. PLoS ONE. 5(8), e11914.
Fujikura, K., Lindsay D., Kitazato H., Nishida S., & Shirayama Y. (2010).  Marine Biodiversity in Japanese Waters. PLoS ONE. 5(8), e11836.
Gordon, D. P., Beaumont J., MacDiarmid A., Robertson D. A., & Ahyong S. T. (2010).  Marine Biodiversity of Aotearoa New Zealand. PLoS ONE. 5(8), e10905.
Graham, L. E., & Wilcox L W. (2000).  Ochrophytes IV - Chrysomeridaleans, Phaeothamniophycians, Tribophyceans, and Phaeophyceans. Algae. 301-342. Upper Saddle River, New Jersey: Prentice-Hall, Inc..
Graham, L. E., Graham J. M., & Wilcox L. W. (2009).  Algae.
Kjellman, F. R. (1891).  Phaeophyceae (Fucoideae). (Engler(editor)A., Pranti(editor)K., Ed.).Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen unter Mitwirkung zahlreicher hervorragender Fachgelehrten, Teil 1, Abteilung 2. 176-181. Leipzig: verlag von Wilhelm Engelmann.
Lane, C. E., Mayes C., Druehl L. D., & Saunders G. W. (2006).  A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic reorganization. Journal of Phycology. 42, 493-512. Abstract
Lee, R E. (1999).  Heterokontophyta, Phaeophyceae. Phycology. 481-557. Cambridge: Cambridge University Press.
Lee, R E. (2008).  Phycology. New York: Cambridge University Press.
Raven, J. A., Johnston A. M., Kubler J. E., Korb R., McInroy S. G., Handley L. L., et al. (2002).  Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Annals of Botany. 90(4), 525 - 536. Abstract
Rousseau, F., & DeReviers B. (1999).  . Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU+LSU rDNA sequence data. . European Journal of Phycology. 34, 53-64.