Common Names

Algues brunes (French), Brown algae (English)

Languages: English



Cell wall: generally contains cellulose (1-10% of thallus dry-weight), alginic acid, and sulfated polysaccharides

Plastids: varies among genera – may be from one to many per cell; typically have a girdle lamella; have a periplastidal endoplasmic reticulum, which is continuous with the nuclear envelope

Pigments: fucoxanthin, which gives the algae their characteristic greenish-brown color; chlorophyll a; chlorophylls c1 and c2; beta-carotene; and violaxanthin

Photosynthetic reserve product: laminarian

(Lee, 1999; Graham & Wilcox, 2000)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Life Cycle

There are three general types of life history among the Phaeophyta: isomorphic alternation of generations, heteromorphic alternation of generations, and diplontic (see diagrams among images). (Graham & Wilcox, 2000)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


“There are no unicellular or colonial organisms in the order, and the algae are basically filamentous, pseudoparenchymatous, or parenchymatous.” (Lee, 1999)

See also: Phaeophyceae 

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Visible thalli range from a few centimeters to over 45 m (150 ft), depending on species and environmental conditions. The gametophytes of species with heteromorphic alternation of generations are microscopic. (Connor & Baxter, 1989).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine



The Phaeophyta are nearly all marine and most occur on rocky substrates in the upper littoral zone and the low to mid intertidal.  There are only four genera with freshwater species, however, several marine taxa can also occur in the brackish water of saltmarshes. (Lee, 1999)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Phaeophyta can dominate the rocky subtidal and intertidal of temperate regions, where, though the species diversity is lower than that of the red algae, their numbers are much higher.  The “Sargasso Sea” is the only area in warm waters where kelps are abundant – as large “rafts” of floating Sargassum. (Lee, 1999).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Sexual and vegetative, with three general life history classes: isomorphic alteration of generations, heteromorphic alternation of generations, and diplontic. Populations occurring in brackish waters have almost totally lost their ability for sexual reproduction. Their primary method of propagation is vegetative.

(Lee, 1999; Graham & Wilcox, 2000).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Evolution and Systematics

Systematics and Taxonomy

This is still debated.  Some algal biologists (phycologists) classify Phaeophyta as a phylum (aka "division") within the plant kingdom, others put it in the kingdom Chromista, and some still classify it among the protists.

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Taxonomic Children

Total: 1



  • Phaeophycophyta (synonym)


Butler, A. J., Rees T., Beesley P., & Bax N. J. (2010).  Marine Biodiversity in the Australian Region. PLoS ONE. 5(8), e11831.
Coll, M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., et al. (2010).  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE. 5(8), e11842.
Connor, J., & Baxter C. (1989).  Kelp Forests.
Costello, M J., Coll M., Danovaro R., Halpin P., Ojaveer H., & Miloslavich P. (2010).  A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE. 5(8), e12110.
Danovaro, R., Company J B., Corinaldesi C., D'Onghia G., Galil B., Gambi C., et al. (2010).  Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE. 5(8), e11832.
Fautin, D., Dalton P., Incze L. S., Leong J-A. C., Pautzke C., Rosenberg A., et al. (2010).  An Overview of Marine Biodiversity in United States Waters. PLoS ONE. 5(8), e11914.
Fujikura, K., Lindsay D., Kitazato H., Nishida S., & Shirayama Y. (2010).  Marine Biodiversity in Japanese Waters. PLoS ONE. 5(8), e11836.
Gordon, D. P., Beaumont J., MacDiarmid A., Robertson D. A., & Ahyong S. T. (2010).  Marine Biodiversity of Aotearoa New Zealand. PLoS ONE. 5(8), e10905.
Graham, L. E., & Wilcox L W. (2000).  Ochrophytes IV - Chrysomeridaleans, Phaeothamniophycians, Tribophyceans, and Phaeophyceans. Algae. 301-342. Upper Saddle River, New Jersey: Prentice-Hall, Inc..
Griffiths, C. L., Robinson T. B., Lange L., & Mead A. (2010).  Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge. PLoS ONE. 5(8), e12008.
Griffiths, H. J. (2010).  Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?. (Unsworth R., Ed.).PLoS ONE. 5(8), e11683.
Keeling, P. J. (2004).  Diversity and evolutionary history of plastids and their hosts. American Journal of Botany. 91, 1481-1493. Abstract
Kjellman, F. R. (1891).  Phaeophyceae (Fucoideae). (Engler(editor)A., Pranti(editor)K., Ed.).Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen unter Mitwirkung zahlreicher hervorragender Fachgelehrten, Teil 1, Abteilung 2. 176-181. Leipzig: verlag von Wilhelm Engelmann.
Lee, R E. (1999).  Heterokontophyta, Phaeophyceae. Phycology. 481-557. Cambridge: Cambridge University Press.
Miloslavich, P., Díaz J M., Klein E., Alvarado J J., Díaz C., Gobin J., et al. (2010).  Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE. 5(8), e11916.
Raven, J. A., Johnston A. M., Kubler J. E., Korb R., McInroy S. G., Handley L. L., et al. (2002).  Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Annals of Botany. 90(4), 525 - 536. Abstract
Simpson, C. L., & Stern D. B. (2002).  The Treasure Trove of Algal Chloroplast Genomes. Surprises in Architecture and Gene Content, and Their Functional Implications. Plant Physiology. 129, 957-966. Abstract
Yoon, H. S., Hackett J. D., Ciniglia C., Pinto G., & Bhattacharya D. (2004).  A Molecular Timeline for the Origin of Photosynthetic Eukaryotes. Molecular Biology and Evolution. 21(5), 809 - 818. Abstract