Languages: English


Brief Summary

When first discovered in 1977, these microscopic single-celled organisms were classified as Bacteria. However, later genetic and biochemical analyses showed that they were more closely related to the Eukaryotes (which include humans). The researchers who discovered this, Woese and his colleagues, proposed the addition of the “domain” as a taxonomic level above that of kingdom, with all life classified within one of three domains, now called Bacteria, Eukaryotes, and Archaea. As of 2010 more than 250 species of Archaea had been described, most fitting into one of two groups, Euryarchaeota and Crenarchaeota. Many of these live in extreme environments – places where we once believed no life could exist.

(Woese et al., 1990; Kimball, 2010; UCMP, accessed 2011)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine



Archaea are generally less than one micron long, may or may not have flagella, and cell-shapes include spherical, box-like, triangular, and slender filamentous forms (UCMP, accessed 2011).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine



Because Archaea can thrive in extreme environments, they occur in places we didn’t think were habitats – very low (4 °C) and very high (120 °C) temperatures of polar seas, hydrothermal vents and hot sulfur springs; high and very low pH; hypersaline water, and anaerobic environments like human colons and termite guts.  They also live in moderate habitats in the oceans, soils, freshwater (Kimball, 2010).

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine


Apparently nearly anywhere and eveywhere on Earth.

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Evolution and Systematics

Systematics and Taxonomy


Euryarchaeota: methanogens, halophiles, thermophiles

Crenarchaeota: hyperthermophiles, cool-water marine plankton, nitrifying soil/sediment microbes

Nanoarchaeota: thermophiles

Korarchaeota (proposed): thermophiles

Thaumarchaeota (proposed): chemolithoautotrophic ammonia-oxidizers


(Hohn et al., 2002; Huber et al., 2002; Brochier-Armanet et al., 2008; Kimball, 2010; Spang et al., 2010; Auchtung et al.,  2011)

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

Taxonomic Children

Total: 2

Crenarchaeota, Euryarchaeota


Aravalli, R. N., She Q., & Garrett R. A. (1998).  Archaea and the new age of microorganisms. Trends in Ecology & Evolution. 13, 190-194. Abstract
Auchtung, T. A., Shyndriayeva G., & Cavanaugh C. M. (2011).  16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia.. Extremophiles : life under extreme conditions. 15(1), 105-16. Abstract
Brochier-Armanet, C., Boussau B., Gribaldo S., & Forterre P. (2008).  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology. 6(3), 245 - 252. Abstract
Brown, J. R., & Doolittle W. F. (1997).  Archaea and the prokaryote-to-eukaryote transition. Microbiology & Molecular Biology Reviews. 61, 456-502. Abstract
Butler, A. J., Rees T., Beesley P., & Bax N. J. (2010).  Marine Biodiversity in the Australian Region. PLoS ONE. 5(8), e11831.
Cadillo-Quiroz, H., Yavitt J. B., Zinder S. H., & Thies J. E. (2010).  Diversity and Community Structure of Archaea Inhabiting the Rhizoplane of Two Contrasting Plants from an Acidic Bog. Microbial Ecology. 59(4), 757 - 767. Abstract
Cavicchioli, R., Curmi P. M. G., Saunders N., & Thomas T. (2003).  Pathogenic archaea: do they exist?. BioEssays. 25(11), 1119 - 1128. Abstract
Chia, N., Cann I., & Olsen G. J. (2010).  Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea. (Ahmed N., Ed.).PLoS ONE. 5(6), e10866. Abstract
Ciccarelli, F. D., Doerks T., von Mering C., Creevey C. J., Snel B., & Bork P. (2006).  Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science. 311(5765), 1283 - 1287. Abstract
Ciccarelli, F. D., Doerks T., von Mering C., Creevey C. J., Snel B., & Bork P. (2006).  Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science. 311(5765), 1283 - 1287. Abstract
Coll, M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., et al. (2010).  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE. 5(8), e11842.
Danovaro, R., Company J B., Corinaldesi C., D'Onghia G., Galil B., Gambi C., et al. (2010).  Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE. 5(8), e11832.
DeLong, E. F. (1992).  Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America. 89, 5685-5689. Abstract
Edgell, D. R., & Doolittle W. F. (1997).  Archaea and the origin(s) of DNA replication proteins. Cell. 89, 995-998. Abstract
Elkins, J. G., Podar M., Graham D. E., Makarova K. S., Wolf Y., Randau L., et al. (2008).  A korarchaeal genome reveals insights into the evolution of the Archaea.. Proceedings of the National Academy of Sciences of the United States of America. 105(23), 8102-7. Abstract
Fautin, D., Dalton P., Incze L. S., Leong J-A. C., Pautzke C., Rosenberg A., et al. (2010).  An Overview of Marine Biodiversity in United States Waters. PLoS ONE. 5(8), e11914.
Forterre, P. (2002).  Evolution of the Archaea. Theoretical Population Biology. 61(4), 409 - 422. Abstract
Francis, C. A., Roberts K. J., Beman J. M., Santoro A. E., & Oakley B. B. (2005).  Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences. 102(41), 14683 - 14688. Abstract
Fujikura, K., Lindsay D., Kitazato H., Nishida S., & Shirayama Y. (2010).  Marine Biodiversity in Japanese Waters. PLoS ONE. 5(8), e11836.
Gordon, D. P., Beaumont J., MacDiarmid A., Robertson D. A., & Ahyong S. T. (2010).  Marine Biodiversity of Aotearoa New Zealand. PLoS ONE. 5(8), e10905.
Gribaldo, S., & Brochier-Armanet C. (2006).  The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B: Biological Sciences. 361(1470), 1007 - 1022. Abstract
Gribaldo, S., Poole A. M., Daubin V., Forterre P., & Brochier-Armanet C. (2010).  The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?. Nature Reviews Microbiology. 8, 743-752. Abstract
Griffiths, C. L., Robinson T. B., Lange L., & Mead A. (2010).  Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge. PLoS ONE. 5(8), e12008.
Griffiths, H. J. (2010).  Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?. (Unsworth R., Ed.).PLoS ONE. 5(8), e11683.
Gupta, R. (1998).  Life's Third Domain (Archaea): An Established Fact or an Endangered Paradigm? A New Proposal for Classification of Organisms Based on Protein Sequences and Cell Structure. Theoretical Population Biology. 54(2), 91 - 104. Abstract
Hohn, M. J., Hedlund B. P., & Huber H. (2002).  Detection of 16S rDNA sequences representing the novel phylum "Nanoarchaeota": indication for a wide distribution in high temperature biotopes.. Systematic and applied microbiology. 25(4), 551-4. Abstract
HU, ANYI., YAO TANDONG., JIAO NIANZHI., LIU YONGQIN., YANG ZAO., & LIU XIAOBO. (2010).  Community structures of ammonia-oxidising archaea and bacteria in high-altitude lakes on the Tibetan Plateau. Freshwater Biology. 55, 2375-2390. Abstract
Huber, H., Hohn M. J., Rachel R., Fuchs T., Wimmer V. C., & Stetter K. O. (2002).  A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 417(6884), 63 - 67. Abstract
Kelly, S., Wickstead B., & Gull K. (2011).  Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proceedings of the Royal Society B: Biological Sciences. 278(1708), 1009 - 1018. Abstract
Kimball, J. W. (2010).  Archaea. Kimball's Biology Pages. 2011, The pages represent an online biology textbook..
Leininger, S., Urich T., Schloter M., Schwark L., Qi J., Nicol G. W., et al. (2006).  Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 442(7104), 806 - 809. Abstract
Makarova, K. S., Yutin N., Bell S. D., & Koonin E. V. (2010).  Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Reviews Microbiology. 8(10), 731 - 741. Abstract
Miloslavich, P., Díaz J M., Klein E., Alvarado J J., Díaz C., Gobin J., et al. (2010).  Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE. 5(8), e11916.
Oxley, A. P. A., Lanfranconi M. P., Würdemann D., Ott S., Schreiber S., McGenity T. J., et al. (2010).  Halophilic archaea in the human intestinal mucosa. Environmental Microbiology. 12(9), 2398 - 2410. Abstract
Rachel, R., Meyer C., Klingl A., Gürster S., Heimerl T., Wasserburger N., et al. (2010).  Methods in Cell Biology Electron Microscopy of Model Systems - Analysis of the Ultrastructure of Archaea by Electron Microscopy. 96, 47 - 69. Abstract
Schleper, C. (2010).  Ammonia oxidation: different niches for bacteria and archaea?. The ISME Journal. 4(9), 1092 - 1094.
Soler, N., Marguet E., Cortez D., Desnoues N., Keller J., van Tilbeurgh H., et al. (2010).  Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins. Nucleic Acids Research. 38(15), 5088 - 5104. Abstract
Spang, A., Hatzenpichler R., Brochier-Armanet C., Rattei T., Tischler P., Spieck E., et al. (2010).  Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology. 18(8), 331 - 340. Abstract
UCMP (Submitted).  Introduction to the Archaea: Life's extremists. .. 2011, Berkeley, California: University of California Museum of Paleontology.
Woese, C. R., Kandler O., & Wheelis M. L. (1990).  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America. 87, Abstract