Mnemiopsis leidyi

Mnemiopsis leidyi A. Agassiz, 1865

Languages: English

Overview

Comprehensive Description

Mnemiopsis leidyi is a ctenophore that is native to the western Atlantic, but by the late 1980s was established as an invasive exotic in the Black Sea, presumably after crossing the Atlantic in ship ballast water (it has subsequently appeared in the Caspian, Aegean, Azov, Marmara, North, Baltic, Skagerrak, and Mediterranean Seas). It reached very large numbers and depleted stocks of zooplankton as well as fish eggs and larvae, triggering the crash of several fisheries. In 1997, however, another ctenophore native to the western Atlantic, Beroe ovata, was discovered in the northeastern Black Sea. Beroe ovata is known to feed on planktivorous ctenophores and, in particular, on M. leidyi. The arrival of B. ovata appears to have stabilized the Black Sea ecosystem, leading to a reduction in M. leidyi populations and subsequent recovery of plankton and fish populations. (Shiganova et al. 2003 and references therein)

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Description

Behaviour

When Mnemiopsis leidyi is disturbed it may produce bright green luminescent flashes along the combs (Gosner 1978), particularly in late summer (Pollock 1998).

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Development

Most adult tentacle-bearing ctenophores (tentaculates) have an excellent ability to regenerate missing body regions (Coonfield 1937 and references therein; Henry and Martindale 2000 and references therein) and are capable of replacing all identified cell types and structures in their correct location regardless of which portions are removed or damaged.  Henry and Martindale studied a phenomenon known as "post-regeneration" in Mnemiopsis leidyi and discussed the significance of their findings in terms of the organization of the ctenophore body plan and the mechanisms involved in cell fate specification. In post-regeneration, deficient embryos generate incomplete larval or adult body plans in which no embryonic regulation (self-correction) has apparently taken place. Subsequently, regeneration of the missing structures occurs in the larva or adult, which is somehow able to “detect” the missing structures, even though these were never present to begin with. Because no injury is required to initiate the post-regenerative effort (as would be necessary, by definition, for ordinary regeneration), the phenomenon of post-regeneration suggests that some intrinsic map of the complete body plan exists within these partial animals. The authors note that the beroids (atentaculates), which do not form tentacles during their development, are not capable of post-regeneration. They speculate about possible developmental mechanisms that might explain this difference between the tentaculate and atentaculate ctenophores. (Henry and Martindale 2000)

Henry and Martindale (2001) report on a study using cell lineage and cell deletion techniques to investigate cell interactions in key aspects of Mnemiopsis leidyi development.

Pang and Martindale (2008) isolated seven homeobox genes from M. leidyi and examined their expression through development. They found that most of these homeobox genes begin expression at gastrulation and that their expression patterns suggest a possible role in patterning of the tentacle apparati and pharynx.

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Morphology

Mnemiopsis leidyi has a somewhat flattened oval body with lobes exceeding the body length; it is brilliantly luminescent (Gosner 1978).

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Size

Mnemiopsis leidyi reaches around 10 cm (Gosner 1978).

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Ecology

Ecology

Kremer (1994) reviewed the ecology of Mnemiopsis leidyi and M. mccradyi in Atlantic and Gulf of Mexico coastal waters from Cape Cod to Texas.

In the invaded areas of the Black, Azov and Caspian Seas, large populations of Mnemiopsis leidyi have contributed to major ecological regime shifts from a pelagic system dominated by planktivorous fish to one dominated by gelatinous plankton, including a total collapse of the pelagic fisheries in the 1990s (Shiganova and Bulgakova 2000; Oguz et al. 2008).

In the early 1980s, M. leidyi was introduced to the Black Sea. By 1988, it had spread across the entire Sea and underwent a population explosion in the fall of 1989, with populations fluctuating dramatically in subsequent years. Huge M. leidyi populations decreased the biomass, density, and species diversity of edible zooplankton as well as fish eggs and larvae, the main food of M. leidyi. This, in turn, caused declines in stocks of planktivorous fish (such as anchovy [Engraulis encrasicolus ponticus], horse mackerel [Trachurus mediterraneus ponticus], and, to a lesser extent, sprat [Sprattus sprattus phalericus]). Declines in these fish populations led to declines in piscivorous fish and dolphins feeding mostly on anchovy and sprat. Mnemiopsis leidyi expanded from the Black Sea to the Seas of Azov and Marmara and were regularly carried out to the Aegean Sea with the Black Sea currents. In 1999, M. leidyi was introduced into the Caspian Sea, apparently, with ballast waters of oil tankers. An important factor permitting the explosion of M. leidyi populations was the lack of a predator in its new range. In 1997, however, another ctenophore native to the western Atlantic, Beroe ovata, was discovered in the northeastern Black Sea.  Beroe ovata is known to feed on planktivorous ctenophores and, in particular, on M. leidyi. The arrival of Beroe ovata appears to have stabilized the Black Sea ecosystem, leading to a reduction in M. leidyi populations and subsequent recovery of plankton and fish populations. (Shiganova et al. 2003 and references therein)

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Distribution

In its native range, Mnemiopsis leidyi is found from Cape Cod Bay (Massachusetts, U.S.A.) southward and is the most common ctenophore south of Cape Cod. It enters the nearly freshwater parts of estuaries such as Chesapeake Bay. (Gosner 1978)

Mnemiopsis leidyi is native to the Atlantic coast of the United States, but over the past several decades it has invaded the Black, Caspian, Aegean, Azov, Marmara, North, Baltic, and Skagerrak Seas and has recently been reported to be established in the Mediterranean Sea (Faasse and Bayha 2006; Javidpour et al. 2006; Boersma et al. 2007; Reitzel et al. 2007 and references therein; Fuentes et al. 2010; Reusch et al. 2010 and references therein).

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Associations

Young of the burrowing anemone Edwardsiella lineata (formerly known as Edwardsia leidyi or Fagesia lineata as a consequence of taxonomic confusion, Daly 2002), which resemble pinkish tentacled worms, are parasitic in the guts of ctenophores, including Mnemiopsis leidyi (Gosner 1978). The ecological and developmental relationships among E. lineata, M. leidyi, and another ctenophore, Beroe ovata, were studied by Reitzel et al. (2007). They found that although E. lineata infects both of these ctenophores, E. lineata larvae proved far more successful at infecting M. leidyi than B. ovata. Furthermore,  E. lineata parasites excised from M. leidyi exhibited greater developmental competence than did E. lineata excised from B. ovata. The authors found that, although E. lineata is efficiently transferred from M. leidyi to B. ovata when the latter preys upon the former, E. lineata larvae are not well adapted for parasitizing or feeding in the latter species. Their results strongly suggest that M. leidyi is the preferred host--and possibly the only suitable natural host--for E. lineata. Although in the wild B. ovata can become more heavily infested than M. leidyi with E. lineata, B. ovata nevertheless appears to be an inadvertent host that acquires E. lineata parasites principally, if not exclusively, from feeding on infected M. leidyi. Furthermore, E. lineata’s competence to complete development from the parasite to the adult polyp is affected by both its size and the terminal host it occupies. Development proceeds more quickly and successfully when M. leidyi is the terminal host. (Conveniently for researchers, when E. lineata is excised from its host, it undergoes a rapid developmental transformation, during which it morphs from the nonciliated, vermiform [worm-like] body plan it exhibits as a parasite into the ciliated, fusiform body plan typical of a planula larva. Remarkably, if provided with a second host, the planula can reinfect another ctenophore and revert to the parasite body plan, whereas if it is denied a second host, the planula can develop into a free-living polyp.) (Reitzel et al. 2007 and references therein)

Beroe ovata is a selective predator favoring M. leidyi in locations where the native ranges of these animals overlap, and along with B. ovata it has therefore been suggested as a biological control agent for invasive M. leidyi in the Black Sea (B. ovata has now established itself in much of the non-native range of M. leidyi, rendering planning for its possible use as a control agent largely academic). However, the combined effects of B. ovata and E. lineata on M. leidyi populations are difficult to predict. These effects could be strictly additive, or the 2 species might even act synergistically to drive M. leidyi populations more sharply downward. Either of these interactions could achieve the desired result of controlling M. leidyi. However, if E. lineata has a negative impact on B. ovata populations, particularly if E. lineata impacts B. ovata more negatively than it impacts M. leidyi, then the presence of E. lineata could undermine efforts to control M. leidyi using B. ovata. On the other hand, in the event that E. lineata has a similarly detrimental effect on both M. leidyi and B. ovata, the simultaneous deployment of E. lineata and B. ovata could serve as an effective control on M. leidyi populations that would be self-limiting, as B. ovata blooms could be controlled by the parasitic anemones. This last possibilty seems particularly important given that B. ovata may generalize its ecological niche to include feeding on other gelatinous zooplankton, including native ctenophores and jellyfish. Given the current level of understanding of interactions among these species, Reitzel et al. question the wisdom of any active effort to use E. lineata as a biological control agent against M. leidyi. (Reitzel et al. 2007)

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Evolution and Systematics

Phylogeography

Reusch et al. (2001) used microsatellites to infer the geographic origins of invasive Mnemiopsis leidyi in Eurasia. They concluded that the Mnemiopsis invading the Black and Caspian Seas in the 1980s and 1990s originated from within or close to the Gulf of Mexico, whereas the 2006 invasion of the North and Baltic Seas could be traced directly to the New England region of the United States. Genetic diversity in the Baltic Sea was similar to that in New England, but diversity in the North Sea was reduced, supporting the hypothesis that this ctenophore intitially invaded northern Europe via a Baltic port. There has been some suggestion that Mnemiopsis south of Cape Hatteras, North Carolina (U.S.A.) are M. mccradyi rather than M. leidyi, which would mean that the Mnemiopsis that invaded the Black and Caspian Seas were actually M. mccradyi, but so far most evidence seems to indicate that this is not the case and that in fact all the Eurasian Mnemiopsis invasions have involved M. leidyi (Reusch et al. 2010 and references therein). More generally, Gorokhova and Lehtiniemi (2010) suggested that the identification of ctenophores in the Baltic Sea as Mnemiopsis has not been approached with sufficient rigor, a charge vigorously denied by Javidpour et al. (2010). Faasse and Bayha (2006) also emphasize the care that must be taken in identifying ctenophores, ideally using both morphological and molecular analyses, and suggest that M. leidyi may have been present in Dutch waters for several years prior to their report of its presence, having previously been misidentified as the morphologically similar Bolinopsis infundibulum.

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

Relevance

Risk Statement

According to McNamara et al. (2010), in its native range along the mid-Atlantic coast of the US, Mnemiopsis leidyi appears to be increasing in abundance and undergoing shifts in its historical seasonal distribution. Recent increases in ctenophore abundance in a variety of areas have been attributed to various marine ecosystem alterations, including localized warming of seawater masses (but apparently not Long Island estuaries, which were the focus of studies by McNamara et al.) and the removal of ctenophore predators (such as butterfish) and competitors (such as zooplanktivorous fishes) by overfishing (McNamara et al. 2010 and references therein). McNamara et al. studied shifting M. leidyi abundance in Long Island (New York, U.S.A.) estuaries and its implications for top-down control of the plankton community. They estimated that at its highest densities M. leidyi can remove an overall average of 20 to 89% per day of bivalve mollusk veliger larvae and other zooplankton taxa, including adult copepods, nauplii (early larvae of certain crustaceans), and tintinnids (a group of ciliate protozoans). The authors suggest that increasing ctenophore abundance, especially during a period when they were not historically abundant (i.e., June) may have significant consequences for species which spawn at this time. For example, current populations of M. leidyi represent a major source of larval mortality for bivalves and may inhibit efforts to recover viable populations of commercially important shellfish such as the hard clam Mercenaria mercenaria in Long Island estuaries.

Author(s): Shapiro, Leo
Rights holder(s): Shapiro, Leo

References

Boersma, M., Malzahn A. M., Greve W., & Javidpour J. (2007).  The first occurrence of the ctenophore Mnemiopsis leidyi in the North Sea. Helgoland Marine Research. 61, 153-155.
Coonfield, B. R. (1937).  THE REGENERATION OF PLATE ROWS IN MNEMIOPSIS LEIDYI, AGASSIZ. Proceedings of the National Academy of Sciences (USA). 23, 152-158.
Daly, M. (2002).  Taxonomy, anatomy, and histology of the lined sea anemone, Edwardsiella lineata (Verrill, 1873) (Cnidaria: Anthozoa: Edwardsiidae). Proceedings of the Biological Society of Washington. 115, 868-877.
Faasse, M. A., & Bayha K. M. (2006).  The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion?. Aquatic Invasions. 1, 270-277.
Fuentes, V. L., Angel D. L., Bayha K. M., Atienza D., Edelist D., Bordehore C., et al. (2010).  Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean Sea in 2009. Hydrobiologia. 645, 23-37.
Gorokhova, E., & Lehtiniemi M. (2010).  Reconsidering evidence for Mnemiopsis invasion in European waters. Journal of Plankton Research. 32, 93-95.
Gosner, K. L. (1978).  A Field Guide to the Atlantic Seashore. Boston: Houghton Mifflin.
Henry, J. Q., & Martindale M. Q. (2000).  Regulation and Regeneration in the Ctenophore Mnemiopsis leidyi. Developmental Biology. 227, 720-733.
Henry, J. Q., & Martindale M. Q. (2001).  Multiple Inductive Signals Are Involved in the Development of the Ctenophore Mnemiopsis leidyi. Developmental Biology. 238, 40-46.
Javidpour, J., Molinero J. C., & Sommer U. (2010).  Reconsidering evidence for Mnemiopsis invasion in European waters: reply. Journal of Plankton Research. 32, 97-98.
Javidpour, J., Sommer U., & Shiganova T. (2006).  First record of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea. Aquatic Invasions. 1, 299-302.
Kremer, P. (1994).  Patterns of abundance for Mnemiopsis in U.S. coastal waters: a comparative review. ICES Journal of Marine Science. 51, 347-354.
McNamara, M. E., Lonsdale D. J., & Cerrato R. M. (2010).  Shifting abundance of the ctenophore Mnemiopsis leidyi and the implications for larval bivalve mortality. Marine Biology. 157, 401-412.
Oguz, T., Fach B., & Salihoglu B. (2008).  Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. Journal of Plankton Research. 30, 1385-1397.
Pang, K., & Martindale M. Q. (2008).  Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Development Genes and Evolution. 218, 307-319.
Pollock, L. W. (1998).  A Practical Guide to the Marine Animals of Northeastern North America. New Brunswick, New Jersey: Rutgers University Press.
Reitzel, A. M., Sullivan J. C., Brown B. K., Chin D. W., Cira E. K., Edquist S. K., et al. (2007).  ECOLOGICAL AND DEVELOPMENTAL DYNAMICS OF A HOST-PARASITE SYSTEM INVOLVING A SEA ANEMONE AND TWO CTENOPHORES. Journal of Parasitology. 93, 1392-1402.
Reusch, T. B. H., Bolte S., Sparwel M., Moss A. G., & Javidpour J. (2010).  Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Molecular Ecology. 19, 2690-2699.
Shiganova, T. A., & Bulgakova Y. V. (2000).  Effects of gelatinous plankton on Black Sea and Sea of Azov fish and their food resources. ICES Journal of Marine Science. 57, 641-648.
Shiganova, T. A., Musaeva E. I., Bulgakova Y. V., Mirzoyan Z. A., & Martynyuk M. L. (2003).  Invaders Ctenophores Mnemiopsis leidyi (A. Agassiz) and Beroe ovata Mayer 1912, and Their Influence on the Pelagic Ecosystem of Northeastern Black Sea. Biology Bulletin. 30, 180-190.