Echinodermata

Echinodermata

Languages: English

Overview

Brief Summary

Echinodermata is an entirely marine taxon, occurring throughout the world’s oceans and includes sea stars, brittle stars, sea urchins, sand dollars, sea cucumbers, and sea lilies.  Echinoderms are tricoelomate deuterostomes, with a simple hemal/excretory system, decentralized nervous system, and (in most species) separate sexes, with planktonic larvae settling to become benthic adults.

 

Distinguishing characteristics:

1.  Pentamerous symmetry in adults, though larvae are bilaterally symmetrical.

2.  Hard endoskeleton of calcareous ossicles, either loosely connected (e.g., brittle stars) or tightly bound (e.g., sea urchins).

3.  Water vascular system involved in feeding, locomotion, and respiration.

4.  Mutable dermis and connective tissue that, under the control of the nervous system, can fluctuate between extremely rigid and essentially fluid.

Author(s): Soulanille, Elaine
Rights holder(s): Soulanille, Elaine

References

Barnes, A. T., Quetin L. B., Childress J. J., & Pawson D. (1976).  Deep-sea macroplanktonic sea cucumbers: suspended sediment feeders captured from deep submergence vehicle. Science. 194, 1083-1085.
Butler, A. J., Rees T., Beesley P., & Bax N. J. (2010).  Marine Biodiversity in the Australian Region. PLoS ONE. 5(8), e11831.
Coll, M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., et al. (2010).  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE. 5(8), e11842.
Costello, M J., Coll M., Danovaro R., Halpin P., Ojaveer H., & Miloslavich P. (2010).  A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges. PLoS ONE. 5(8), e12110.
Cowles, D., Dyer A., & McFadden M. (2002).  Key to Invertebrates Found At or Near The Rosario Beach Marine Laboratory. 2011, Abstract
Danovaro, R., Company J B., Corinaldesi C., D'Onghia G., Galil B., Gambi C., et al. (2010).  Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE. 5(8), e11832.
Fautin, D., Dalton P., Incze L. S., Leong J-A. C., Pautzke C., Rosenberg A., et al. (2010).  An Overview of Marine Biodiversity in United States Waters. PLoS ONE. 5(8), e11914.
Fujikura, K., Lindsay D., Kitazato H., Nishida S., & Shirayama Y. (2010).  Marine Biodiversity in Japanese Waters. PLoS ONE. 5(8), e11836.
Gebruk, A. V. (1983).  Abyssal holothurians of the genus Scotoplanes (Elasipoda, Elpidiidae)[in Russian, English summary]. Zoologicheskii Zhurnal . 62, 1359-1370.
Gordon, D. P., Beaumont J., MacDiarmid A., Robertson D. A., & Ahyong S. T. (2010).  Marine Biodiversity of Aotearoa New Zealand. PLoS ONE. 5(8), e10905.
Griffiths, C. L., Robinson T. B., Lange L., & Mead A. (2010).  Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge. PLoS ONE. 5(8), e12008.
Griffiths, H. J. (2010).  Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?. (Unsworth R., Ed.).PLoS ONE. 5(8), e11683.
Gutt, J., & Piepenburg D. (1991).  Dense aggregations of three deep-sea holothurians in the southern Weddell Sea, Antarctica. Marine Ecology Progress Series. 68, 277-285.
Guzman, H. M., & Guevara C. A. (2002).  Annual reproductive cycle, spatial distribution, abundance, and size structure of Oreaster reticulatus (Echinodermata: Asteroidea) in Bocas del Toro, Panama. Marine Biology. 141, 1077-1084.
Hansen, B. (1975).  Systematics and biology of the deep-sea holothurians. Galathea Report: Scientific Results of the Danish Deep-Sea Expedition Round the World 1950-52. 1-262.
Heimeier, D., Lavery S., & Sewell M. A. (2010).  Molecular Species Identification of Astrotoma agassizii from Planktonic Embryos: Further Evidence for a Cryptic Species Complex. Journal of Heredity. 101, 775-779.
Hunter, R. L., & Halanych K. M. (2008).  Evaluating Connectivity in the Brooding Brittle Star Astrotoma agassizii across the Drake Passage in the Southern Ocean. Journal of Heredity. 99, 137-148.
Metaxas, A., Scheibling R. E., & Young C. M. (2002).  Estimating fertilization success in marine benthic invertebrates: a case study with the tropical sea star Oreaster reticulatus. MARINE ECOLOGY PROGRESS SERIES. 226, 87-101.
Metaxas, A., Scheibling R. E., Robinson M. C., & Young C. M. (2008).  LARVAL DEVELOPMENT, SETTLEMENT, AND EARLY POST-SETTLEMENT BEHAVIOR OF THE TROPICAL SEA STAR OREASTER RETICULATUS . Bulletin of Marine Science. 83, 471-480.
Miloslavich, P., Díaz J M., Klein E., Alvarado J J., Díaz C., Gobin J., et al. (2010).  Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE. 5(8), e11916.
Pawson, D. L. (1976).  Some aspects of the biology of deep-sea echinoderms. Thalassia Jugoslavica. 12, 287-293.
Pawson, D. L. (1982).  Deep-sea echinoderms in the Tongue of the Ocean, Bahama islands: A survey, using the research submersible Alvin. Australian Museum Memoirs. 16, 129-145.
Ruppert, E. E., Fox R. S., & Barnes R. D. (2004).  Echinodermata. Invertebrate Zoology: a Functional Evolutionary Approach. 7, 873-929. Belmont, CA: Thomson: Brooks/Cole.
Scheibling, R. E. (1980).  Abundance, spatial distribution, and size structure of populations of Oreaster reticulatus (Echinodermata: Asteroidea) in seagrass bed. Marine Biology. 57, 95-105.
Scheibling, R. E. (1980).  Dynamics and Feeding Activity of High-Density Aggregations of Oreaster reticulatus (Echinodermata: Asteroidea) in a Sand Patch Habitat. Marine Ecology Progress Series. 2, 321-327.
Scheibling, R. E., & Metaxas A. (2010).  MANGROVES AND FRINGING REEFS AS NURSERY HABITATS FOR THE ENDANGERED CARIBBEAN SEA STAR OREASTER RETICULATUS. Bulletin of Marine Science. 86, 133-148.
Théel, H. (1882).  Report on the Holothurioidea dredged by H.M.S. Challenger during the years 1873-1876, Part 1. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the Years 1873-1876, Zoology. 4, 1-176.
Wulff, J. L. (1995).  SPONGE-FEEDING BY THE CARIBBEAN STARFISH OREASTER RETICULATUS. Marine Biology. 123, 313-325.
Wulff, J. L. (2008).  Collaboration among sponge species increases sponge diversity and abundance in a seagrass meadow. Marine Ecology. 29, 193-204.