Cell adhesion in the process of asexual reproduction of tunicates

Title Cell adhesion in the process of asexual reproduction of tunicates
Publication TypeJournal Article
Year of Publication1999
Refereed DesignationRefereed
AuthorsKawamura, K., & Sugino Y. M.
JournalMicroscopy Research and Technique
Volume44
Issue4
Pagination269-278
ISSN1059-910X
Abstract

Cell adhesion during budding of tunicates is reviewed from the viewpoints of histology, cytology, biochemistry, and molecular biology. Two kinds of multipotent cells play important roles in bud formation and development: epithelial cells, such as the atrial epithelium of botryllids and polystyelids, and mesenchymal cells, referred to as haemoblasts. Haemoblasts are able to aggregate to form a solid mass of cells, which soon becomes a hollow vesicle. The vesicular epithelium has junctional complexes that contain adherens junctions, and, sometimes, tight junctions; both occur apicolaterally on the plasma membrane. The hollow vesicle develops into the heart, the pyloric gland and duct, the gonad, including germ cells, and even the multipotent epithelium of buds. Cell culture studies suggest that multipotent epithelial cells may be interchangeable with haemoblasts. Several kinds of calcium-dependent, galactose-binding tunicate lectins (TC-14s) have been isolated and sequenced, and have been found to facilitate both in vivo and in vitro cell aggregation and migration. Tunicate homologs of cadherin and integrin genes have recently been isolated from Botryllus and Polyandrocarpa, respectively. Their unique molecular characteristics are discussed in the context of roles that they play in cell adhesion in the process of tunicate budding.